Alcohol promotes in vitro chondrogenesis in embryonic facial mesenchyme.
نویسندگان
چکیده
Ethanol is a well-recognized teratogen in vertebrates that can perturb the development of the facial primordia and various other embryonic structures. However,the mechanisms underlying alcohol's effects on embryogenesis are currently unclear. Recent evidence suggests that the cranial neural crest, which forms the entire facial skeleton, may be a particularly sensitive target of ethanol teratogenicity. In the present study we have examined the influence of in vitro ethanol exposure on cartilage differentiation in micromass cultures of mesenchymal cells isolated from the various facial primordia (maxillary, mandibular, frontonasal, and hyoid processes) of the stage 24 chick embryo. In all four populations of facial mesenchyme, exposure to 1-1.5% ethanol promoted marked increases in Alcian blue-positive cartilage matrix formation, a rise in 35SO4 accumulation into matrix glycosaminoglycans, and enhanced expression of cartilage-characteristic type II collagen and aggrecan gene transcripts. In frontonasal and mandibular mesenchyme cultures, which undergo extensive spontaneous cartilage formation, ethanol treatment quantitatively elevated both matrix production and cartilage-specific gene transcript expression. In cultures of maxillary process and hyoid arch mesenchyme, which form little or no cartilage spontaneously, ethanol exposure induced the formation of chondrogenic cell aggregates and the appearance of aggrecan and type II collagen mRNAs. These actions were not restricted to ethanol, since tertiary butanol treatment also enhanced cartilage differentiation in facial mesenchyme cultures. Our findings demonstrate a potent stimulatory effect of alcohol on the differentiation of prechondrogenic mesenchyme of the facial primordia. Further analysis of this phenomenon might yield insight into the developmental mechanisms underlying the facial dysmorphologies associated with embryonic ethanol exposure.
منابع مشابه
In Vitro Study of the Protective Effects of Hydroalcholic Extract of Soybean against Impact of Oxidative Damage on Osteogenesis and Chondrogenesis of Mouse Limb Bud
Introduction: Oxidative stress has been implicated in the pathogenesis of various diseases affecting chondrogenesis or the function of articular cartilage. The purpose of the present study was to find the effect of soybean extract on reduction of detoriation effects of oxidativestress in embryonic chondrogenesis in vitro. Methods: In order to separate ectoderm from mesenchyme, the limb buds ...
متن کاملEpithelial-mesenchymal tissue interactions guiding otic capsule formation: the role of the otocyst.
The otocyst is the epithelial anlage of the membranous labyrinth which interacts with surrounding cephalic mesenchyme to form an otic capsule. A series of in vitro studies was performed to gain a better understanding of the epithelial-mesenchymal interactions involved in this process. Parallel series of otocyst/mesenchyme (O/M) and isolated periotic mesenchyme (M) explants provided morphologica...
متن کاملThe role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick.
There has been debate in the literature concerning whether the clavicle arises by intramembranous ossification, i.e. is a membrane bone, and whether secondary cartilage develops from its periosteal cells. A histological study of carefully staged embryos revealed that pre-clavicular mesenchyme undergoes condensation at H.H. stage 31-32, bone forms by H.H. stage 33 and that a transitory secondary...
متن کاملThe role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick BRIAN
There has been debate in the literature concerning whether the clavicle arises by intramembranous ossification, i.e. is a membrane bone, and whether secondary cartilage develops from its periosteal cells. A histological study of carefully staged embryos revealed that preclavicular mesenchyme undergoes condensation at H. H. stage 31-32, bone forms by H. H. stage 33 and that a transitory secondar...
متن کاملChondroitin sulphate-binding molecules may pattern central projections of sensory axons within the cranial mesenchyme of the developing mouse.
During mammalian hindbrain development, sensory axons grow along highly stereotyped routes within the cranial mesenchyme to reach their appropriate entry points into the neuroepithelium. Thus, trigeminal ganglion axons always project to rhombomere (r)2, whilst facial/acoustic ganglia axons always project to r4. Axons are never observed to enter the mesenchyme adjacent to r3, raising the possibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 43 2 شماره
صفحات -
تاریخ انتشار 1999